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Seaborn

January 27, 2026

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt # Not strictly necessary to load, but it lets,
<you tweak things more

import seaborn as sns # It's customary to use sns as the short name,
~for the seaborn package

sns.set_theme () # This applies the default Seaborn theme

1 Seaborn

Excellent plotting library that is great for making 2D visualizations. It’s particularly strong at
visualizing data tables that contain many columns and with it’s heavy focus on statistics, it makes
it very easy to plot linear regression for example.

Website: https://seaborn.pydata.org/

The library itself is based on Matplotlib and many of the plot display options can be directly
applied to plots produced by Seaborn.

It also works really well with Pandas DataFrame. If you have not heard of Pandas before, it is
pretty much the standard in Python. It’s a very fast library that can load and write data and has
very powerful features that lets you disect and manipulate data. It is not the focus of this workshop
so we’ll not dive into it.

1.1 Data sources

Seaborn comes with a large amount of example datasets in exactly that format so for this session,
we can only focus on visualization and not on data wrangling.

Let’s load the mpg one which shows how fuel efficient certain cars are.

mpg = sns.load_dataset ("mpg")

mpg
mpg cylinders displacement horsepower weight acceleration \
0 18.0 8 307.0 130.0 3504 12.0
1 15.0 8 350.0 165.0 3693 11.5
2 18.0 8 318.0 150.0 3436 11.0
3 16.0 8 304.0 150.0 3433 12.0
4 17.0 8 302.0 140.0 3449 10.5



393 27.0 140.0 86.0 2790 15.6

4
394 44.0 4 97.0 52.0 2130 24.6
395 32.0 4 135.0 84.0 2295 11.6
396 28.0 4 120.0 79.0 2625 18.6
397 31.0 4 119.0 82.0 2720 19.4
model_year origin name
0 70 usa chevrolet chevelle malibu
1 70 usa buick skylark 320
2 70 usa plymouth satellite
3 70 usa amc rebel sst
4 70 usa ford torino
393 82 usa ford mustang gl
394 82 europe vw pickup
395 82 usa dodge rampage
396 82 usa ford ranger
397 82 usa chevy s-10

[398 rows x 9 columns]

There are many columns here. Documentation of these datasets is unfortunately not great. Most
columns are self-explanatory but not all. This is my best guess

Column Meaning

mpg Miles per gallon, i.e. fuel efficiency

cylinders Number of cylinders in the engine

displacement Engine size expressed as total volume of all
cylinders

horsepower Engine power

weight Weight of the car in 1bs

acceleration Acceleration in seconds from 0 to 60 mph

model _year Release year of this car model

origin area where released

name name of the brand and model

In any case, these are handy datasets to show what you can do with Seaborn for plotting.

2 Plotting basics

One of the more elementary plots it the trusty scatter plot where you plot one column against
another column and display the data as scattered points. The function for that is sns.scatterplot.
It takes at least three arguments. It needs to know which dataset you want to plot, which column
is the x-axis, and which column is the y-axis.

There are many more optional arguments, but we will get to that later.



[7]:

[7]:

In this example, we’ll plot mpg versus displacement. The syntax of the plotting function is that
you specify which dataset you want to plot using data=. In most cases, this will be a Pandas
DataFrame, though other data is also possible. DataFrames are definitely more convenient so I
would suggest converting your array into a DataFrame first.

The next thing you need to tell the plot function (if using a DataFrame) are which column should
be plotted against which column using x= and y=.

sns.scatterplot(data=mpg, x="mpg", y="displacement")

<Axes: xlabel='mpg', ylabel='displacement'>
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That that already shows that larger engines has poorer efficiency which is not really unexpected.
There are some outliers though.

We do have many other columns of data that we are not using. We can’t really plot all of the
columns or we’d have a 9-dimensional plot which is a bit hard to visualize. At least, my brain
only goes up to three dimensions. One thing we can however do with Seaborn is style the markers
using data from the other columns. The keywords for that are hue=, style=, and size= which
respectively change the colour, shape, and size of the markers.

For example, we can drill down even further by also marking the point with a colour to indicate
the country of origin.



[11]: sns.scatterplot(data=mpg, x="displacement", y="mpg", hue="origin")

[11]: <Axes: xlabel='displacement', ylabel='mpg'>
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Now we clearly see that American cars have way bigger engines than European or Japanese cars
and generally have way better fuel efficiency too. Note that it automatically generated a legend
too as well as assigned colours to each of the categories.

Seaborn automatically detects is something is a discrete or continuous range. The origin column is a
category (discrete) so they get distinct colours. Something like acceleration however is a continuous
variable to when colouring that, Seaborn automatically applies a colour scale.

[21]: sns.scatterplot(data=mpg, x="displacement", y="mpg", hue="acceleration")

[21]: <Axes: xlabel='displacement', ylabel='mpg'>
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The legend now has light colours to dark colours. The default colour palette is chosen such that
colourblind people can also easily view the plot.
2.1 Exercise 1

Play around with this. The extra parameters are hue= are style= and size=. You can even
combine them.

[20]: sns.relplot(data=mpg, x="displacement", y="mpg", hue="acceleration",
~col="origin")

[20]: <seaborn.axisgrid.FacetGrid at 0x14b538179a50>
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You may have noticed in exercise 1 that it can get quite crowded. Another thing you can do is
to separate out the graphs for different categories. You will have to use relplot for this as this
function knows how to make “FacetPlots”. This function takes the extra arguments col= and row=
for splitting by column and/or row.
[6]: p = sns.relplot(data=mpg, x="displacement", y="mpg", col="origin")
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This technically lets you plot 7 variables at the same time (x, y, hue, style, size, row, col) though
that will of course look awful!

2.2 Other plot types

There are many other plottypes available as well. One really nice one to see relations between
variables at a glance is the pairplot. It makes a scatterplot for every possible combination of
columns. It also takes the same hue, size, and style options as before. Let’s see what that looks
like.

[24]: sns.pairplot(data=mpg, hue="origin")
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<seaborn.axisgrid.PairGrid at 0x14b52c¢282250>
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This immediately shows a bunch of interesting things. Greater fuel efficiency can be had from
lower weight, less horsepower, and smaller engines. You can also see that newer cars generally have
better fuel efficiency too. American cars are usually worse at fuel efficiency too.

Another thing we can show is the correlation matrix as a heatmap. A correlation is a value between
-1 and 1 that tells you how correlated a column is with another. 1 means the two columns are
proportionally related, -1 means that they are inversely related, and 0 means they are not related
at all.

corrmatrix = mpg.select_dtypes(exclude="object").corr() # Pandas can calculate,
~the correlation matriz

sns.heatmap(corrmatrix, vmin=-1, vmax=1) # Plot the heatmap and
»force the colours to range from -1 to 1



[27]: <Axes: >
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This looks ok, but there is a better way of showing this. It would be much better if “not correlated”,
doesn’t show as prominently. We’d ideally like to have white for the value 0 and opposing colours
for positive and negative colours.

Enter colourmaps!

The Seaborn documentation has a lot of colours to choose from as well as tools to create your own.
Additionally, these colourmaps are based on the Matplotlib ones, so all of those are available as
well.

2.3 Exercise 2

Add the cmap= parameter to the heatmap plot command above and choose a palette that better
shows positive and negative correlations.

[33]: sns.heatmap(corrmatrix, vmin=-1, vmax=1, cmap="terrain")

[33]: <Axes: >


https://seaborn.pydata.org/tutorial/color_palettes.html
https://matplotlib.org/stable/users/explain/colors/colormaps.html
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3 Theming

Speaking of colours, there is a lot more you can do than just altering the colour of the data. Seaborn
has a set_theme function that we used at the very top of this notebook to set the default theme,
but you can also give it options to change the theme. These are documented online. It’s a great
way to have a consistent look in your graphs.

The set_theme functions affects all plots, so you would typically call it right after importing the
seaborn package. It has options for the context, style, palette, and fonts as well as some extra
Matplotlib options that can be added.

o The context are things like “notebook” (default for Jupyter Notebooks) as well as “paper”,


https://seaborn.pydata.org/generated/seaborn.set_theme.html

and “talk”. These affect things like linewidth, making the graph look better ot that specific
medium.

e The style affect the general look of the graph and it sets colours and size. There are prebuilt
styles or you can build your own.

e The pallete, we have seen before, but by using set_theme, the chosen palette applies to all
graphs.

There are five preset styles to choose from. “darkgrid” is the default.
[34]: for t in ["white", "ticks", "dark", "whitegrid", "darkgrid"]:

sns.set_theme(style=t)
sns.scatterplot(data=mpg, x="displacement", y="mpg")

print(t)
plt.show()
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It is also possible to customoize these style. You can supply the rc= parameter to the
sns.set_theme function to load customization on top of an prebuilt theme. For example, to
get the style I used for the intro slide with a black background, I change the colours of the grid
and text.

[38]: custom_style = {

'axes.facecolor': 'black',
'axes.edgecolor': 'lightgrey',
'figure.facecolor': 'black',
'axes.labelcolor': 'white',
'text.color': 'white',
'xtick.color': 'yellow',

'ytick.color': 'yellow',

3
sns.set_theme(style="darkgrid", palette="Set2", rc=custom_style)
sns.scatterplot(data=mpg, x="displacement", y="mpg")

[38]: <Axes: xlabel='displacement', ylabel='mpg'>

14
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You can view the settings for a built-in style with axes_style. This will tell you what is available
to tweak as well.

[39]: sns.axes_style("darkgrid")

[39]: {'figure.facecolor': 'white',
'axes.labelcolor': '.15',
'xtick.direction': 'out',
'ytick.direction': 'out',
'xtick.color': '.15',
'ytick.color': '.15',
'axes.axisbelow': True,
'grid.linestyle': '-',

'text.color': '.15',
'font.family': ['sans-serif'],
'font.sans-serif': ['Arial',

'DejaVu Sans',

'Liberation Sans',

'Bitstream Vera Sans',

'sans-serif'],
'lines.solid_capstyle': 'round',

15



'patch.edgecolor': 'w',
'patch.force_edgecolor': True,
'image.cmap': 'rocket',
'xtick.top': False,
'ytick.right': False,
'axes.grid': True,
'axes.facecolor': '#EAEAF2',
'axes.edgecolor': 'white',
'grid.color': 'white',
'axes.spines.left': True,
'axes.spines.bottom': True,
'axes.spines.right': True,
'axes.spines.top': True,
'xtick.bottom': False,
'ytick.left': False}

[43]: sns.set_theme() # Reset the theme back to default

4 Statistics

One of the great strengths of Seaborn is the statistical plots it can show. For example, it can create
plots with linear regression built in plus the confidence intervals.

[44]: sns.lmplot(data=mpg, x="horsepower", y="acceleration", hue="origin")

[44] : <seaborn.axisgrid.FacetGrid at 0x14b52462d450>

16
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Looks like Japanese cars are better at translating more horsepower into faster acceleration. Of note
is that lmplot does not need to do only linear regression. It can do other types too like polynomial
and logistic.

For example, 2nd order polynomial:

[45]: sns.lmplot(data=mpg, x="horsepower", y="acceleration", hue="origin", order=2)

[45]: <seaborn.axisgrid.FacetGrid at 0x14b5245a4ad0>
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Another interesting one is weight for the various markets. That’s nicely shown with a boxplot
which shows the quartiles of the distribution as well. I also picked a particular order for this with
the order= parameter.

[14]: sns.boxplot(data=mpg, x="origin", y="weight", order=["japan", "europe", "usa"l)

[14]: <Axes: xlabel='origin', ylabel='weight'>

18
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The API reference has a detailed overview of all the plotting functions and its arguments. They
all come with example code as well which helps getting the plot you want right. All of the options
a plotting function takes are explained thoroughly. The documentation is really good.

https://seaborn.pydata.org/api.html

5 Exercise 3

Load the penguins data set and try to reproduce the following graph using the API reference.

19
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It’s a bit of a nonsensical graph as the binning is displayed pretty badly this way, but it’s just to
let you see how the documentation works.

penguins = sns.load_dataset("penguins")

6 Additional notes

6.1 Alternative plot syntax

Seaborn has developed an additional declaritive syntax for creating plot which is a bit similar to
gegplot in R. That is, you create a Plot object and then add stuff to it. It allows you to create all
the plots as before but in a more logical way for some people. That might be you!

import seaborn.objects as so

(
so.Plot (penguins, x="bill_length mm", y="bill_depth_mm")
.add(so.Dot())

20
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There is a good help page on that here: https://seaborn.pydata.org/tutorial/objects_ interface.html

6.2 Data structure

Another important thing to be aware of is that data in Seaborn is (mostly) expected to be “long-
form data” as opposed to “wide-form data”.

This is “long-form data” where every row is a single data point with multiple columns

[19]: flights = sns.load_dataset("flights")

flights

[19]: year month passengers
0 1949 Jan 112
1 1949 Feb 118
2 1949 Mar 132
3 1949 Apr 129
4 1949 May 121
139 1960  Aug 606
140 1960 Sep 508
141 1960 Oct 461

21



142 1960 Nov 390
143 1960 Dec 432

[144 rows x 3 columns]

This is “wide-form data” where it’s more like a spreadsheet. That is, the rows and columns are
variables by themselves.

[20]: wide_flights = flights.pivot(index="year", columns="month", values="passengers")
wide_flights

[20]: month Jan Feb Mar Apr May Jun Jul Aug Sep O0Oct Nov Dec
year
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

To convert back to long-form, you can use the pandas function melt. I also use reset_index to
turn the year index into a column for melt to use.

[21]: pd.melt(wide_flights.reset_index(), id_vars=["year"], value_name="passengers")

[21]: year month passengers
0 1949  Jan 112
1 1950 Jan 115
2 19561 Jan 145
3 1952  Jan 171
4 19563 Jan 196
139 1956 Dec 306
140 1957 Dec 336
141 1958 Dec 337
142 1959 Dec 405
143 1960 Dec 432

[144 rows x 3 columns]
Wide-form data does have its use in Seaborn though. For example, it’s great for plotting heatmaps.

[22]: sns.heatmap(data=wide_flights, cmap="inferno", cbar_kws={"label": "passengers"})

22
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<Axes: xlabel='month', ylabel='year'>
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