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1 Plotting in Python with Matplotlib
1.1 Winter visualization series
J. Yohai Meiron, PhD SciNet High Performance Computing Consortium University of Toronto

The University of Toronto is located on the traditional land ofthe Huron-Wendat, the Seneca, and
the Mississaugas of the Credit.

Abstract Matplotlib is the foundational plotting library for Python, and is widely used in tandem
with other scientific libraries (such as NumPy and Pandas) to visualize data across many different
fields. It is a free and open source software library that offers fine-grained control over every aspect
of a plot, making it a powerful tool for customizing figures to meet specific needs. In this workshop,
we will use a Jupyter notebook to show you how to create common 2D plot types such as line,
scatter, and heatmaps, and how to customize the labels, legend, and panel layout. We will briefly
touch on using Matplotlib to produce animations and interactive visualizations. By the end of this
one-hours session, you will have a basic understanding of the library’s capabilities.

How to follow? Notebook link: https://pages.scinet.utoronto.ca/~ymeiron/matplotlib-
demo.ipynb * I’m using SciNet Open OnDemand JupyterLab. Use that if you have access to
the Trillium system. * If you don’t, you can install the notebook, matplotlib, pandas and ipympl
Python packages and the ffmpeg software locally, and launch a notebook server. * You can use a
free (or paid) cloud Jupyter notebook environment (Google Colab, Binder, Kaggle). Note that not
all support interactive plots. * We have a Magic Castle instance for this lecture (details provided
separately). This does not support interactive plots however.

Unfortunately we won’t have time to assist with technical difficulties today.

1.2 Introduction
Matplotlib (MPL) is a plotting library for Python, launched in 2003 and inspired by MATLAB.
Today we are going to learn the basics of working with it, and I’m going to demo a few common
types of plots, but what we can show in an hour is really the tip of the iceberg in terms of what’s
possible. The best way to learn further is to go to the gallery and find a figure with features you
are interested in, and look at the source code to learn how it was made.

MPL provides a high level API (object-oriented as well as state-based) for creating figures, using
several possible backends. This API is called PyPlot, let’s import it and draw our first figure.

[1]: from matplotlib import pyplot as plt
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[3]: fig, ax = plt.subplots()

The subplots function, called with no parameters here, caused this image to be added to our
notebook and returned Figure and Axes objects. The figure is the top level container for all the
plot elements. Each visible element, or an object that can draw itself on a figure, is called an artist
in MPL terminology (the figure itself is also technically an artist). The axes object (or subfigure) is
an artist contained in the figure, and it itself contains other artists (such as the ticks and labels, and
plot elements once we add them). Artists have member functions that we can use to manipulate
them, as we shall see. Axes are optional but in this lecture we’ll always use them, and we can have
more than one set of axes in the figure.

� This is not the only way to create a figure with axes. In fact, there are usually multiple ways to
do anything in Matplotlib, in violation of the Zen of Python. Here we’ll stick to an object-oriented
coding style and avoid shortcuts. This will produce a code that is slightly longer, but more readable.

1.2.1 Backends

Let’s talk about the figure appearing in the notebook. While this was just one line, obviously there
is a lot of low level backend code that’s involved here. MPL can use several different backends to
actually create an image (be it static or interactive). We don’t need to know much about what
they do and how, but just that we have the choice.
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Jupyter notebooks The default backend in Jupyter notebooks is called inline. It essentially
creates a PNG image (a static bitmap) from the figure, that is embedded into the notebook web
page. Here, we cannot interact with the plot.

An alternative backend for Jupyter Notebooks is ipympl (requires a package of the same name to
be installed). It renders the figure as an applet using web technologies (such as JavaScript) that
get embedded in the notebook web page. Here, we can interact with the figure using the mouse
as we are going to see. To switch to this backend use the %matplotlib ipympl Jupyter “magic”
command.

� In a notebook, if we create a figure in one cell, the Figure object still exists in the following cells
(until it’s discarded, e.g. the fig name reassigned). If it (or subordinate artists) is manipulated in
the following cells, this will only affect what we see embedded in the notebook if we are using the
ipympl backend. If the inline backend is used, commands run in the following cells won’t affect
the already-displayed figure. In this case you can draw the figure again using display(fig).

[4]: %matplotlib ipympl
# Run this cell and go back to the cell where we created the previous figure,␣

↪and run it again.

Interactive backends and the show function If the Python code runs as a standalone program
through the command line, you’ll usually use a backend that renders the figure in a graphical
window. The backend will normally be chosen automatically based on the operating system and
Python/MPL installation, but can be changed using the matplotlib.use function.

Importantly, when all figures are ready, use plt.show() to indicate to the backend to open the
graphical windows (one per figure).

Static backends and the savefig function If the Python code runs in a non-interactive
environment, such as when running a batch job in an HPC cluster, you’ll use a static backend,
that will not attempt to render anything to the screen. In most cases the library will know that
there is no display available, but if MPL is trying to use an interactive backend for some reason
and is producing an error, you can change it by using the matplotlib.use function (and choosing
a static backend such as agg).

In those cases, you will save a figure to a file. The static backend will be chosen automatically
based on the file extension. For example:

[5]: fig.savefig('simple_figure.pdf')

1.3 Line plot
Let’s create our first plot.

[6]: import numpy as np
x = np.linspace(0, 16, 256)
y1 = np.sin(x)
y2 = np.cos(x)

fig, ax = plt.subplots()
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ax.plot(x, y1, label='sine')
ax.plot(x, y2, label='cosine')
ax.legend()
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Trigonometric functions');

# The semicolon at the end of the last command just suppresses some unwanted␣
↪output in the Jupyter notebook

� The alternative to this object-oriented approach is to use the plt.plot function, which creates
the figure and axes if they don’t already exist.

1.4 The global style
As we just saw, sensible defaults are used when creating a new figure. We didn’t have to specify
what font to use, what colour to use for each line, where to place the ticks, etc. In this case we just
used MPL’s defaults, giving us this signature look.
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1.4.1 Runtime configuration settings

When producing many figures (e.g. for publication, or a poster), we might want to tweak these
defaults, so our figures have a consistent look. To do this we can tweak the runtime configuration
settings by manipulating matplotlib.rcParams. For example:

[7]: import matplotlib as mpl
mpl.rcParams['font.family'] = 'Futura LT'
# Run this cell and go back to the cell where we created the previous figure,␣

↪and run it again.

Will change the default font of artists (reminder: this means figure elements) to Futura, in all
future figures in this notebook.

There are (currently) 322 different settings (not all style-related)! So MPL plots are extremely
customizable. You can find them listed here.

� When choosing a font, it has to be installed on the machine where the Python interpreter (for the
Jupyter notebook in this case) is running.

1.4.2 Style sheets

In addition to MPL’s “signature” look, additional pre-defined styles are available (see them listed
here). Load them with plt.style.use (and of course, you can still tweak the chosen style by
manipulating matplotlib.rcParams)

[8]: plt.style.use('classic') # Also try: ggplot, fivethirtyeight, bmh
# Run this cell and go back to the cell where we created the previous figure,␣

↪and run it again.

[9]: # Restore defaults values of all runtime configuration settings
plt.rcdefaults()

1.5 Keyword arguments
The most common way to customize part of the figure is to pass keyword arguments to the function
that creates the artist. In the line plot example, the first line was blue and the second orange, this
colour sequence is defined in the default style sheet. We can manipulate the line’s characteristics
by passing suitable keywords that the plot function can accept (see documentations).

[10]: fig, ax = plt.subplots()
l, = ax.plot(x, y1, color='r', linewidth=4, linestyle='--')
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• The string r is a single character shorthand notation for “red”, there are many other ways to
specify colours.

• The string -- indicates a dashed line, see other options here.
• Capturing the output (artist) of ax.plot is not mandatory and not needed in most cases,

but if we have it we can manipulate it (the line style or even the data) in the future (useful
for animations!) For example:

[11]: l.set_linewidth(0.5)

[12]: l.set_ydata(np.sin(4*x))

• Some keywords have aliases: color → c, linewidth → lw, linestyle → ls
• The plot function also supports a third positional argument (after x and y) that can be

used to specify colour and line style (as well as marker style), so the above is equivalent to
ax.plot(x, y1, 'r--', linewidth=4).

1.6 More about figures and axes
Let’s create a figure with two sets of axes one on top of the other. We’ll make the same line plot
in both.

6

https://matplotlib.org/stable/users/explain/colors/colors.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html


[13]: fig, [ax1, ax2] = plt.subplots(nrows=2, figsize=(6.4, 6.4))
func = lambda x: np.exp(x)/(np.sin(2*x)+2)
ax1.plot(x, func(x))
ax2.plot(x, func(x));

• We used keyword arguments for plt.subplots to make two sets of axes in one column, and
also change the figure size.

• The figsize keyword argument takes a tuple of width and height in the Imperial “inch” unit
(2.54 cm). The default figure size is 6.4 × 4.8 of those units (rcParams['figure.figsize']),
and the on-screen resolution is 100 pixels per “inch” (rcParams['figure.dpi']).

• We drew two independent sets of axes. We can lock the x-axis by adding sharex=True to
plt.subplots.

• Of course, we can have bigger grids of subplots, and even more elaborate arrangements by
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using GridSpec.

This plot isn’t very good because of the large range of y-values. Let’s change the lower subplot
such that the y-axis is logarithmic:

[14]: ax2.set_yscale('log')

By default, MPL leaves some margins around the data for determining axis limits
(cf. rcParams['axes.xmargin']).

We can manually set the limits to whatever we want like so:

[15]: ax2.set_xlim(0, 10);

• If the x-axis is shared (sharex=True) then whatever limits we set for ax2 will apply to ax1
as well (and vice versa)!

• Axes has convenience functions to create a line plot and simultaneously change the scaling to
logarithmic, these are semilogx, semilogy, and loglog.

If we want to change the spacing between the subplots, we can call Figure.subplots_adjust
(cf. Figure.tight_layout)

[16]: fig.subplots_adjust(hspace=0.025)

1.7 Scatter plots
We can use plt.plot for simple scatter plots as well. We just have to make sure that there are
markers but no line.

[17]: x_peaks = np.arctan(-1/2) + np.arange(1, 6)*np.pi
ax2.plot(x_peaks, func(x_peaks), linestyle='', marker='o');

• There are quite a few markers to choose from (and you can make your own), see here.
• We could have created an equivalent plot with the third positional argument:

ax2.plot(x_peaks, func(x_peaks), 'o')

The Axes class has many more plotting functions! While plot can create a scatter plot, all markers
have the same shape, size, and colour. We can use scatter instead if we want to represent additional
properties visually. In the example below we use Pandas to retrieve a small dataset related to
penguins, and create a scatter plot of bill length vs. flipper length, where the colour represents a
third property (body mass).

[18]: import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/allisonhorst/palmerpenguins/

↪master/inst/extdata/penguins.csv')
display(df)

x = df['flipper_length_mm']
y = df['bill_length_mm']
prop = df['body_mass_g']
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species island bill_length_mm bill_depth_mm flipper_length_mm \
0 Adelie Torgersen 39.1 18.7 181.0
1 Adelie Torgersen 39.5 17.4 186.0
2 Adelie Torgersen 40.3 18.0 195.0
3 Adelie Torgersen NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0
.. … … … … …
339 Chinstrap Dream 55.8 19.8 207.0
340 Chinstrap Dream 43.5 18.1 202.0
341 Chinstrap Dream 49.6 18.2 193.0
342 Chinstrap Dream 50.8 19.0 210.0
343 Chinstrap Dream 50.2 18.7 198.0

body_mass_g sex year
0 3750.0 male 2007
1 3800.0 female 2007
2 3250.0 female 2007
3 NaN NaN 2007
4 3450.0 female 2007
.. … … …
339 4000.0 male 2009
340 3400.0 female 2009
341 3775.0 male 2009
342 4100.0 male 2009
343 3775.0 female 2009

[344 rows x 8 columns]

[19]: fig, ax = plt.subplots()
scatter_plot = ax.scatter(x, y, c=prop)
ax.set_xlabel('Flipper length [mm]')
ax.set_ylabel('Bill length [mm]')
fig.colorbar(scatter_plot, label='Body mass [g]');
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• This colour map is called viridis and is the default because it works well when printed in
greyscale and is colourblind-friendly (“monotonic luminance”). It is also relatively perceptu-
ally uniform.

• There are many more options, and you can make your own.
– Try passing cmap='jet' to scatter.

• Instead of the c keyword argument, try using s to have the marker size represent the property
– � You will usually have to transform the property somehow to get a useful visualization.

1.8 Text and annotation
We can place a text anywhere within the axes by calling the text function of the object (and there
is also a Figure.text to place text in the figure, not associated with one axes/subplot object or
another). In the example below we used Axes.annotate that is a bit more feature rich: it can
place the text, but also shift it with respect to the point of interest, and draw and arrow to it.

[20]: i_maxmass = np.argmax(prop)
x_maxmass, y_maxmass = x[i_maxmass], y[i_maxmass]
ax.annotate(

f'chonkiest\npenguin\n({0.001*prop[i_maxmass]} kg)', # What text to place
(x_maxmass, y_maxmass), # What point to annotate
xytext=(15, -80), textcoords='offset points', # Where to put the annotation
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arrowprops=dict(arrowstyle='->'), # Arrow properties
bbox=dict(boxstyle='round', facecolor='w', alpha=0.5), # Box properties
horizontalalignment='center' # Other text properties

);

1.9 More baic plot types

[21]: x = np.arange(0, 10, 0.5)
noise_envelope = np.sqrt((x+1)/10)
np.random.seed(3)
noise = np.random.randn(len(x))*noise_envelope
y = np.cos(x) + noise
fig, axs = plt.subplots(nrows=3, figsize=(6.4, 6.4), sharex=True)
axs[0].errorbar(x, y, yerr=noise_envelope, linestyle='', marker='o', capsize=3)
axs[0].set_title('Errorbar', y=0.8)
axs[1].step(x, y)
axs[1].set_title('Step', y=0.8)
axs[2].bar(x, y, width=0.25)
axs[2].set_title('Bar', y=0.8)
axs[0].set_xlim(x[0], x[-1])
fig.suptitle('More basic plot types')
fig.subplots_adjust(hspace=0.05)
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� A useful convenience function is Axes.hist, which calculates a histogram from a dataset and
draws a bar (or step) plot. Generally speaking, MPL is not a package for data analysis or numerical
calculations, but it does have a few convenience functions for statistics and spectral analysis.

Seaborn is another library that uses MPL for data visualization. It provides a (even) higher-level
API, that does both data analysis and plotting with fewer lines of code compared to MPL (check
out Jarno’s talk next week).

1.10 Visualizing 2D data
The simplest way to visualize the values of a 2D array is by using the Axes.imshow function,
assuming a regular grid. This function treats the array values as image pixels, and maps it into
the axes based on the extent argument.
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[22]: x_ = np.linspace(-3, 3, 64)
y_ = np.linspace(-3, 3, 64)
x, y = np.meshgrid(x_, y_)
z = 3*(1-x)**2*np.exp(-x**2-(y+1)**2) - 10*(x/5-x**3-y**5)*np.exp(-x**2-y**2) -␣

↪(1/3)*np.exp(-(x+1)**2-y**2)

fig, ax = plt.subplots()
im = ax.imshow(z, origin='lower', extent=[-3, 3, -3, 3])
fig.colorbar(im)
ax.set_xlabel('x')
ax.set_ylabel('y');

Like with scatter, you can choose a different colour map by passing the cmap parameter.

If the array is 3-dimensional, and the third dimension is size 3 or 4, this will be interpreted as a
colour image (RGB or RGBA) and displayed accordingly.

� Axes.imshow will show the array upside-down by default (with respect to how NumPy arrays are
interpreted), use origin='lower' to change this behaviour.

An alternative to imshow is pcolormesh, that supports non-uniform grids and have a syntax that’s
more similar to the basic plotting functions. However it is slower and may produce very large
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output files if a vector graphics format is used (such as PDF or SVG).

You can also use contour or contourf:

[23]: fig, ax = plt.subplots()
contour = ax.contour(x, y, z, levels=12)
ax.clabel(contour)
ax.set_xlabel('x')
ax.set_ylabel('y');

This plot looks squashed because by default it’s adjusted to the size of the axes. We can force the
aspect ratio like so:

[24]: ax.set_aspect('equal')

1.11 3D plotting
Matplotlib can make basic and even reasonably advanced 3D plots (surfaces, wireframes, scatter,
bars, etc.) It is not a full 3D rendering engine and lacks many features such as complex lighting
and shadows, volumetric rendering, and advanced camera controls. Additionally it is not hardware
accelerated, so will not handle large datasets as well as specialized tools.

Here is a demonstration of plotting the 2D array from before as a surface:

[25]: fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(x, y, z)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');

1.12 Animations
An animation is just a sequence of still frames. As we saw throughout this lecture, once an artist is
created, we can use various functions to modify it. The MPL animation module provides a useful
class called FuncAnimation: you need to pass to it a function that updates the plot as a side effect,
and the resultant Animation object can be saved or displayed on screen. Here is an example:

[26]: import matplotlib.animation as animation

frames = 60
x = np.linspace(0, 16, 256)
t = np.linspace(0, 2*np.pi, frames+1)[:-1]
y1 = np.sin(x)*np.sin(t[0])
y2 = np.cos(x)*np.cos(t[0])

fig, ax = plt.subplots()
l1, = ax.plot(x, y1, label='sine')
l2, = ax.plot(x, y2, label='cosine')
ax.legend(loc='upper left')

14

https://matplotlib.org/stable/gallery/mplot3d/index.html


ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Trigonometric functions')
text = ax.text(0, 0.65, 't = 0.00', bbox=dict(boxstyle='round', facecolor='w',␣

↪alpha=0.5), fontfamily='monospace')

def update(frame):
y1 = np.sin(x)*np.sin(t[frame])
y2 = np.cos(x)*np.cos(t[frame])
l1.set_ydata(y1)
l2.set_ydata(y2)
text.set_text(f't = {t[frame]:.2f}')

ani = animation.FuncAnimation(fig=fig, func=update, frames=frames,␣
↪interval=3000/frames)

# Show animation in notebook
plt.close(fig)
from IPython.display import HTML
HTML(ani.to_html5_video())

[26]: <IPython.core.display.HTML object>

• We created a figure much like we did before; we added two line plots, a legend, and a text.
• Notice we passed loc='upper left' to legend (otherwise it will jump around in the anima-

tion depending on the line plots).
• The update function recalculates the y values for both plots.

– It updates the plot (Line2D) artists.
– It updates the text (Text) artist.

• There are several other ways to embed an animation in a notebook, this one works quite well.
– We closed the figure with plt.close so the static figure doesn’t show up in addition to

the animation.
– Beware of very large animations in a Jupyter notebook, you might want to just save to

a file with Animation.save.

1.13 Interactivity
In addition to the built-in interactive capabilities of the axes object, you can add widgets such as
buttons and sliders, capture events in the Python code and update the plot as needed.

This probably shouldn’t be your first choice to develop a UI for an application, but can be useful
to interactively adjust parameters. The example below adds a button to the figure, clicking it calls
the update function that, like before, changes the existing artists.

[27]: from matplotlib.widgets import Slider
fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)
x = np.linspace(0, 16, 256)

15

https://matplotlib.org/stable/gallery/widgets/index.html


y = np.sin(x)
l, = ax.plot(x, y, linewidth=2)
ax.set_title(r'$\sin(\omega x)$')
ax.set_xlabel('x')
ax.set_ylabel('y')

def update(value):
y = np.sin(x*value)
l.set_ydata(y)

ax_slider = fig.add_axes([0.3, 0.05, 0.4, 0.025])
slider = Slider(ax_slider, r'$\omega$', 0.5, 3, valinit=1)
slider.on_changed(update);

[ ]:
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